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Abstract Small crystalline particles or precipitates are

often formed comprising near polyhedral shapes with

round edges. Using the anisotropy of the surface energy

given by a simple broken-bond model for fcc crystals, a

geometrical analysis is performed to consider the particle-

shape dependence of surface energy. Polyhedral and nearly

polyhedral particles composed of {100} and {111} planes

are treated as examples. The effect of round edges on

the variation of surface energy of the nearly polyhedral

particles is discussed.

Introduction

Various factors affect the shapes of small metals particles

or precipitates in alloys. The crystal structure represents

one of the factors, since the shapes of the particles or

precipitates sometimes show symmetry reflecting the

symmetry of the alloy crystal structure. Indeed, polyhedral

shapes composed of low-index planes are typical examples

of such symmetrical shapes [1–6]. For materials having

cubic crystal structures, the small particles or precipitates

often show shapes similar to polyhedra composed of the

low-index planes, {100}, {110}, and {111} [1–6]. How-

ever, the shapes are in general not perfect polyhedra but are

instead nearly polyhedral with rounded edges [1–6].

To discuss the origins of the shapes of the small particles

or precipitates in a physically sound manner, simple

equations describing the shapes are effective [1, 7–9].

Recently, Onaka derived simple equations to describe

various polyhedra and similar shapes intermediate between

those of a polyhedron and a sphere [10, 11]. A parameter

giving the degree of polyhedrality of the intermediate

shape is given by equations in the literature [1, 9]. Using

these equations [1, 9–11], we consider geometrically the

effect of the round edges of the near polyhedral shapes on

the variation of the surface energy of crystalline particles.

In the present paper, the anisotropy of surface energy given

by a simple broken-bond model for face-centered cubic

(fcc) crystals [12] is assumed as a simplified state. The

polyhedra composed of the following two kinds of low-

index planes, {100} and {111}, and the corresponding

intermediate shapes somewhere between such polyhedra

and a sphere are discussed.

Simple equations yielding polyhedra, spheres,

and intermediate shapes

The following equation using the x–y–z orthogonal coor-

dinate system gives the shapes of a sphere, a cube, and

intermediate shapes by choosing an appropriate value of p

[1, 9–11, 13]:

x=Rj jpþ y=Rj jpþ z=Rj jp¼ 1ðR [ 0; p� 2Þ: ð1Þ

A sphere with radius R is given by Eq. 1 when p = 2,

and a cube with edges 2R is given by Eq. 1 when p!1:
Figure 1 shows the shapes given by Eq. 1 with intermediate

values of p: (a) the x-y cross sections for p = 2, p = 4,

and p = 20, and (b) the 3D representation for p = 20. The

shapes given by Eq. 1 with round edges have been

discussed as representative of the approximate shapes of

Co–Cr precipitates in Cu alloys [1].
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Using the spherical coordinates (r, h, u), Eq. 1 is

rewritten as [10]:

rcubeðh;uÞ ¼
R

G0ð1; 0; 0Þ½ �1=p
; ð2aÞ

where

G0ð1; 0; 0Þ ¼ gð1; 0; 0Þj jpþ gð0; 1; 0Þj jpþ gð0; 0; 1Þj jp

ð2bÞ

and

g a; b; cð Þ ¼ a sin h cos uð Þ þ b sin h sin uð Þ þ c cos hð Þ:
ð2cÞ

In the present paper, we discuss the polyhedral and nearly

polyhedral shapes of materials with cubic structures. Then,

assuming that the x, y, and z axes are parallel to the 100h i
directions of the cubic materials, the surfaces of the cube

become the {100} planes.

Onaka has shown that the shapes of various convex

polyhedra and intermediate shapes somewhere between the

polyhedra and a sphere are given by equations similar to

Eqs. 2a–2c [10]. Four sets of parallel {111} surfaces of

cubic materials combine to form an octahedron. A unit

vector normal to the (111) plane is (c, c, c) and c ¼ 1=
ffiffiffi

3
p

:

Then, an octahedron and intermediate shapes somewhere

between the octahedron and a sphere are given by:

roctaðh;uÞ ¼
R

GIðc; c; cÞ½ �1=p
; ð3aÞ

where

GIðc; c; cÞ ¼ gðc; c; cÞj jpþ gð�c; c; cÞj jpþ gðc;�c; cÞj jp

þ gðc; c;�cÞj jp:
ð3bÞ

Figure 2 shows the shapes given by Eqs. 3a and 3b: (a)

the x-y cross sections for p = 2, p = 4, and p = 20, and

(b) the 3D representation for p = 20. As is the case for Eq. 1,

and Eqs. 2a and 2b, Eqs. 3a and 3b generate a sphere and a

polyhedron when p = 2 and p!1; respectively.

Here, we consider the following equation given by the

combination of G0 (1,0,0) for the cube and GI (c,c ,c) for

the octahedron:

rðh;uÞ ¼ R

G0ð1; 0; 0Þ þ
ffiffiffi

3
p

a
� �p

GIðc; c; cÞ
h i1=p

; ð4Þ

where a is the parameter that determines the relative

importance of GI (c,c,c) compared with G0 (1,0,0).

Figure 3 shows the shapes given by Eq. 4 with a ¼ 1=
ffiffiffi

3
p

:

(a) the x-y cross sections for p = 2, p = 10, and p = 40,

and (b–d) the 3D representation for these values of p.

Equation (4) gives a sphere when p = 2 for any a C 0.

(a) (b)

− R

− R 
0 

R 

− R 

0 

R 

0 

R 

1

p = 2

p = 20

p = 4
R 

R 0 − R 

− R

Fig. 1 The shapes given by Eq. 1 with intermediate values of p:

(a) the x-y cross sections for p = 2, p = 4, and p = 20, and (b) the

3D representation for p = 20
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Fig. 2 The shapes given by Eqs. 3a and 3b with intermediate values

of p: (a) the x-y cross sections for p = 2, p = 4, and p = 20, and (b)

the 3D representation for p = 20
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Fig. 3 The shapes given by Eq. 4 with a ¼ 1=
ffiffiffi

3
p

: (a) the x-y cross sections for p = 2, p = 10, and p = 40, and (b–d) the 3D representations

for these values of p
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Equation 4 gives shapes approaching polyhedra com-

posed of {100} and {111} planes with increasing p. The

shape of the polyhedron given by p!1 is a function of a.

When p!1; Eq. 4 gives the {100} cube for the range

0 B a B 1/3 and the {111} octahedron for the range

1 B a. The shape change of the polyhedron from the {100}

cube to the {111} octahedron occurs as a result of trun-

cation when the value of a is increased from 1/3 to 1 [10,

11]. As shown in Fig. 4, Eq. 4 with p!1 gives a poly-

hedron made by the combination of the {100} cube and the

{111} octahedron. The {100} cube with constant edges 2R

is truncated by the {111} octahedron having a vertex with

the position of (0, 0, R/a). The size of the {111} octahedron

is proportional to 1/a. The point P on the {111} octahedron

and its position on the combined polyhedron are shown in

Fig. 4. The a dependence of the shape of the combined

polyhedron given by Eq. 4 is thus understood.

Figure 5 shows the variation of A/V2/3 as a function a
given by Eq. 4 with p!1; where A and V are the surface

area and volume of the polyhedron, respectively. The

dimensionless value A/V2/3 is the normalized surface area

of the polyhedron when V is kept constant. The insets in

Fig. 5 show the shapes of the {100}-{111} polyhedra for

various a. For the {100}-{111} polyhedra, A/V2/3

becomes a minimum when a ¼ 1=
ffiffiffi

3
p

: Explicit expressions

of the surface area A and volume V of the {100}-{111}

polyhedra are shown in the Appendix.

Figure 6a shows the variation of A/V2/3 caused by the

shape changes from a sphere to various {100}-{111}
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zFig. 4 The polyhedron

afforded by the addition of the
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octahedron, which is given by
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Fig. 5 The variation of A/V2/3 as a function of the parameter a caused

by the shape change of polyhedron given by Eq. 4 with p!1; where

A and V are the surface area and volume of the polyhedron,

respectively. The insets show the variation of shapes of the {100}-

{111} polyhedra as a function of a
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Fig. 6 The geometrical variation caused by the shape changes from a

sphere to various {100}-{111} polyhedra given by Eq. 4. (a) The 3D

representation showing the variation of A/V2/3 as a function of a and

g, and (b) the relationship between p and g given by Eq. 5. The insets

in (a) are the shapes at the indicated values of a and g
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polyhedra given by Eq. 4. The insets showing the shapes

are also indicated in Fig. 6a. In this 3D representation, one

of the axes shows the change in g, where g is the degree of

polyhedrality given by:

g ¼
ffiffiffi

2
p
� 2ð�1=pÞ: ð5Þ

The parameter g equals unity when p = 2(sphere) and
ffiffiffi

2
p

when p!1 and the particle is fully faceted. The

relationship between p and g is shown graphically in

Fig. 6b.

Kimoto and Nishida have studied the morphology of Al

particles made by evaporation in a clean atmosphere of

argon [2]. When the Al particles are isolated, they have the

near {100}-{111} polyhedral shape with round edges as

shown by Figs. 2a and 3a in their paper [2]. In the case of

the Al particle with diameter about 150 nm [2], the shape is

evaluated by the present method of analysis as a & 0.61

and p & 15 (g & 1.35).

Anisotropic surface-energy density given by a simple

model

If the surface-energy density is isotropic, the variation of

A/V2/3 shown in Fig. 6a represents the particle-shape

dependence of the surface energy under a constant volume.

However, the surface-energy density of crystalline mate-

rials is essentially anisotropic and, of course, this is an

important factor when we discuss the shape of the particles

or precipitates.

The formation of surfaces in crystalline materials

invariably results in the breaking of interatomic bonds

across the surfaces. A theoretical explanation for the

anisotropy of the surface-energy density has been made by

considering the difference in the bonds broken as a result of

the difference in the orientation of surface. The simplest

treatment may be that of Mackenzie et al. which is more

commonly known as the nearest-neighbor broken-bond

model [12]. For face-centered cubic crystals, the result

obtained by Mackenzie et al. [12] is written as:

ch ¼ vh � v210ð Þc210; ð6Þ

where ch is the surface-energy density for the surface with

the unit normal vector vh, c210 is the maximum surface-

energy density for the {210} plane, and v210 is the unit

normal vector of the {210} plane. To calculate the value of

ch, the unit vector v210 should be selected so that it is on the

edge of the stereographic triangle that contains vh. The

contours of ch/c210 and the values for {100}, {110}, and

{111} are shown in Fig. 7. As shown in Fig. 7, ch for

{111}, c111 is the lowest, while c100 is less than c110. The

ratio c{111/c{100 given by Eq. 6 is
ffiffiffi

3
p

=2:

Surface energy of polyhedral and nearly polyhedral

particles

Using the surface-energy density ch, the total surface

energy C of a particle is written as:

C ¼
X

chds; ð7Þ

where ds is the surface element on the particle and the

summation of chds is made on the entire surface. When the

volume of the particle is V, the dimensionless value

NC ¼ C= c210V2=3
� �

¼
X

chds= c210V2=3
� �

ð8Þ

shows the particle-shape dependence of the surface energy.

For the particles whose shapes are given by Eqs. 4 and 5,

the a and g dependence of NC ¼
P

chds= c210V2=3
� �

is

shown by the 3D representation in Fig. 8a. Some shapes of

the particles are indicated by the insets in this figure. The

shape of the particle giving the minimum NC � 4:26 is the

polyhedron with a = 2/3, which is the equilibrium shape

when the anisotropy of the surface energy is given by Eq. 6.

That is to say, this is the shape given by the so-called Wulff

plot. The polyhedron with a = 2/3 is known as a tetra-

kaidecahedron having eight regular hexagonal surfaces and

six square surfaces.

We have also considered the variation of NC as a

function of the degree of polyhedrality g when a is deter-

mined so that a minimizes NC(a). Figure 8b shows the

results, i.e., the variation of the minimum of NC(a) as a

function of g. The insets of the particle shapes in this figure

are for those of g = 1 (p = 2) for a sphere, g � 1:30 ðp �
8:23Þ; and g � 1:38 ðp � 28:3Þ for nearly polyhedral

shapes with round edges, and the equilibrium polyhedron

(210)
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0.894 0.949

Fig. 7 Surface-energy contours showing the values of ch /c210 given

by Eq. 6 based on the broken-bond model for face-centered cubic

crystals [12]
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with g ¼
ffiffiffi

2
p
ðp!1:Þ Comparing this result with the p

dependence of the shape change, we find that the round

edges of the nearly polyhedral shapes do not increase the

surface energy significantly. This means that the driving

force to achieve the equilibrium state becomes smaller for

the near polyhedral shapes with round edges.

The present analysis is made using the anisotropy of the

surface energy given by the simple broken-bond model.

However, the geometrical characteristics of the near

polyhedral shapes with round edges are appropriately

included in the evaluation of the surface energy. The same

discussion can be made for near polyhedral shapes by using

more rigorous results on the anisotropy of the surface

energy. The effect of round edges on the interface energy

between the precipitates and the matrix can also be eval-

uated by the present method. Near polyhedral particles or

precipitates are often observed in many alloys [1–6]. If the

equilibrium shape and the relative energies of the surface

are known, we can evaluate the shape dependence of the

surface or interface energy using the present method of

analysis.
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Appendix

The surface area A and volume V of the {100}-{111}

polyhedra are given by Eq. 4 with p!1:
For the {100}-{111} polyhedra given by Eq. 4 with

p!1 , the surface area A = A100 + A111 and the volume

V are given by as follows, where A100 and A111 correspond

to the areas of the {100} and {111} surfaces, respectively.

The variation of shapes of the {100}-{111} polyhedra as a

function of a is shown in the insets in Fig. 5.

(1) When 0 B a B 1/3, Eq. 4 gives the {100} cube with

edges 2R:

A100 ¼ 24R2; A111 ¼ 0 and V ¼ 8R3:

(2) When 1/3 B a B1/2, Eq. 4 gives a polyhedron with

triangular {111} surfaces, which is inscribed in the

cube with edges 2R:

A100 ¼ 24 1� 1
2

3� 1
a

� �2
n o

R2; A111 ¼ 4
ffiffiffi

3
p

3� 1
a

� �2
R2

and V ¼ 8 1� 1
6

3� 1
a

� �3
n o

R3:

(3) When 1/2 B a B 1, Eq. 4 gives a polyhedron with

square {100} surfaces, which is inscribed in the cube

with edges 2R:

A100 ¼ 12
a2 1� að Þ2R2; A111 ¼ 4

ffiffi

3
p

a2 1� 3 1� að Þ2
n o

R2

and V ¼ 4
3a3 1� 3 1� að Þ3
n o

R3:

(4) When 1 B a, Eq. 4 gives the {111} octahedron with

edges
ffiffiffi

2
p

R=a:

A100 ¼ 0; A111 ¼ 4
ffiffi

3
p

a2 R2 and V ¼ 4
3a3 R3:
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